Sunday, 10 January 2016

HEAT AND MASS TRANSFER

Differential equation of heat transfer

In order to find out the rate of heat transfer ,let consider an element from the bulk
  





Heat flowing in x direction  
During the time dt                          =-k­­­­­­­­­­­­­­­­­­­­­­x dz dy ∂T/∂x dt
Heat flowing in x direction in time dt = Qxdt
 By expansion of the equation
(f(x+h)­) =fx +h f’x+h2f’’x+………..
Then Q(x+dx) = Qx+(∂ Heat flowing in x direction is Qx = -k­­­­­­­­­­­­­­­­­­­­­­x dz dy ∂T/∂x
Qx/∂x) dx
Then heat accumulation = Qx+dx– Qx
QX +  ∂QX/∂X - Qx
(∂Qx/∂x)             = (∂(-kdzdy)/∂x) × ∂T/∂x × dt dx
                            =  -kx2T/∂x2 dx dy dz dt
Similarly
Heat accumulated due to heat flow in y direction
Ky2T/∂y2dxdydzdt

Total heat accumulated = sum of heat accumulation in all direction
=(kx2T/∂x2 + ky2T/∂y2 +2T/∂z2)dxdydzdt
If q. is the heat generated in differential element /volume
Then heat generated in time dt is=  q.dxdydzdt
Net heat accumulation =
(kx2T/∂x2+ky2T/∂y2+kz2T/∂z2+q.)dxdydzdt                                            6
Due to heat accumulation body temperature changes by dT
Q= mCpdT                                                                                          
=D×dxdydz×CpdT                                                                                          7
Equating  6 and 7
D CpdT = (kx2T/∂x2+ky2T/∂y2+kz2T/∂z2+q.)dt 
Dividing by dt
(kx∂2T/∂x2+ky2T/∂y2+kz2T/∂z2+q. )= DCp∂T/∂t
For isotropic material k= constant
K(∂2T/∂x2+∂2T/∂y2+∂2T/∂z2+q./k)    = DCp∂T/∂t
(∂2T/∂x2+∂2T/∂y2+∂2T/∂z2+q./k)    = 1/(k/DCp) ×∂T/∂t
1/(k/DCp) = thermal diffusibility  =1/α




No comments:

Post a Comment